Artykuły
Permanent URI for this collection
Browse
Browsing Artykuły by Author "Bajkowski, Sławomir"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Impact of beaver dams on surface channel capacity and phytocoenoses diversity of Łąki Soleckie (PLH140055)(Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB), 2024) Oleszczuk, Ryszard; Urbański, Janusz; Pawluśkiewicz, Bogumiła; Bajkowski, Sławomir; Małuszyński, Marcin J.; Małuszyńska, Ilona; Jadczyszyn, Jan; Hewelke, EdytaThe aim of the study was to determine the extent to which created and functioning beaver dams contribute to increasing water retention in the Łąki Soleckie facility (Mała River valley). Changes in the plant cover of meadow habitats within the range of beaver dams were also determined. During the growing periods in 2020–2022, measurements of the periodic levels and water retention of the Mała River and the adjacent ditches (R-27, R-29) were closely related to the activity of beavers and precipitation. The maximum volume of water retained in the Mała riverbed in 2020–2022 was 1,300, 1,700, and 1,200 m3; the maximum retention of the R-29 ditch was 270, 210, and 200 m3, respectively. In 2021–2022, the R-27 ditch collected the most water – 270 m3 and 250 m3. Starting from June 2022, due to beaver dams D2 and D3, the water level in the river and water retention have stabilised at a high level, despite slight rainfall. The activity of beavers contributed to the transformation of communities of wet habitats located on organic soils (Calthion) into communities of periodically wet habitats (Caricetum gracilis). In places where natural habitat 6510 occurs, the coverage of species of the Festuca genus has increased, and the value of the biodiversity index has increased by an average of 9%. High stability in the community of expansive species (Deschampsia caespitosa and Veronica longifolia) and their increasing cover may make it difficult to maintain the proper condition of natural habitat 6510.Item The Impact of Beaver Dams on the Dynamic of Groundwater Levels at Łąki Soleckie(MDPI, 2024-05-15) Bajkowski, Sławomir; Oleszczuk, Ryszard; Urbański, Janusz; Jadczyszyn, Jan; Kiraga, MartaAreas excluded from agricultural production are susceptible to the presence of beaver families. The most significant changes occur during the initial period, when agricultural utilization is abandoned and beavers establish their presence on the land. During this period, some parcels remain uncultivated, while agricultural activities persist in neighboring areas. This situation is accompanied by the destruction of beaver dams, especially during periods of abundant water resources, and notably during intensive fieldwork. The article presents field studies aimed at determining the extent to which constructed and operational beaver dams contribute to changes in groundwater levels in drained peatland areas. In order to protect and sustainably use peat soils, it is necessary to maintain their high moisture content by ensuring a high groundwater level elevation. This can be achieved through the use of existing damming structures in the area (levees, weirs). Beaver dams can also serve a similar function, blocking the outflow of water from peat lands by raising the water level and consequently retaining it naturally. The specific objective was to develop principles for verifying factors influencing the effects of beaver dam construction on groundwater levels in fields within their range of influence. The water table levels within the study area during rainless periods were influenced by water levels in ditches, dependent on beaver activity in the nearby river. Beaver activities, manifested through dam construction, were influenced by periodic water resources in the river, defined by the cumulative monthly precipitation. Factors affecting groundwater levels in rainless periods on the plots also included the distance from the river cross-section and the permeability of soils expressed by the filtration coefficient of the active layer. Beaver dams had the greatest impact on stabilizing the water table in the soil profile closest to the river.