Metabolic Profiling via UPLC/MS/MS and In Vitro Cholinesterase, Amylase, Glucosidase, and Tyrosinase Inhibitory Effects of Carica papaya L. Extracts Reveal Promising Nutraceutical Potential

dc.contributor.authorSoria‑Lopez, Anton
dc.contributor.authorPecio, Łukasz
dc.contributor.authorR. Saber, Fatema
dc.contributor.authorI. A. Abdel‑dayem, Shymaa
dc.contributor.authorFayez, Shaimaa
dc.contributor.authorZengin, Gokhan
dc.contributor.authorKozachok, Solomiia
dc.contributor.authorEl‑Demerdash, Amr
dc.contributor.authorGarcia‑Marti, Maria
dc.contributor.authorOtero‑Fuertes, Paz
dc.contributor.authorMejuto, Juan Carlos
dc.contributor.authorSkalicka‑Woźniak, Krystyna
dc.contributor.authorSimal‑Gandara, Jesus
dc.date.accessioned2024-11-19T14:17:05Z
dc.date.available2024-11-19T14:17:05Z
dc.date.issued2024-10-16
dc.description.abstractCarica papaya (Family Caricaceae) is endowed with a myriad of biological activities as gastroprotective, antidiabetic, antimalarial, antiviral, and anti-inflammatory agent. We performed for the first time an extensive comparative metabolite profiling of different plant organs considering both male and female leaves, seeds, and fruits of different maturity stages. The phytochemical fingerprinting-via UPLC/MS/MS- of C. papaya led to tentative identification of 84 metabolites belonging to different primary and secondary phytoconstituents to include alkaloids (carpaine derivatives), flavonoids, glucosinolates, organic and phenolic acids, amino acids, and carbohydrates. The seeds’ profile was enriched with hydroxybenzoic acids and their derivatives, while leaves were characterized by the prevalence of carpaine alkaloids, flavonoids, lipids, and alkylated sugars. Correlation analysis revealed a significant positive correlation between total phenolic content and the antioxidant assays (ferric reducing antioxidant property (FRAP), 2, 2-diphenyl-1- picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), cupric-reducing antioxidant capacity (CUPRAC), and total antioxidant capacity (TAC)). Principal component analysis was applied to find out possible phytochemical trends across C. papaya matrices, where PC1 and PC2 accounted for 46.57 and 19.93% of the variability in the data set with well-separated extracts into groups mostly on the basis of plant organ. The PCA model showed that immature seeds had the highest antioxidant properties, while leaves separated from fruit and mature seeds due to higher butyrylcholinesterase and α-amylase inhibition, but lower acetylcholinesterase and α-glucosidase inhibition activity. We corroborate the better exploitation of both edible and inedible parts of C. Papaya in nutraceutical supplements after sufficient in vivo and toxicity studies.
dc.description.sponsorshipFunding for open access charge: Universidade de Vigo/CISUG
dc.identifier.citationSoria-Lopez, A., Pecio, Ł., Saber, F.R. et al. Metabolic Profiling via UPLC/MS/MS and In Vitro Cholinesterase, Amylase, Glucosidase, and Tyrosinase Inhibitory Effects of Carica papaya L. Extracts Reveal Promising Nutraceutical Potential. Food Anal. Methods (2024).
dc.identifier.doi10.1007/s12161-024-02688-5
dc.identifier.issn1936-9751
dc.identifier.urihttps://bc.iung.pl/handle/123456789/2449
dc.language.isoen
dc.publisherSpringer
dc.subjectCarica papaya
dc.subjectmetabolomics
dc.subjectUPLC-HRESIMS
dc.subjecttyrosinase
dc.subjectbutyrylcholinesterase
dc.titleMetabolic Profiling via UPLC/MS/MS and In Vitro Cholinesterase, Amylase, Glucosidase, and Tyrosinase Inhibitory Effects of Carica papaya L. Extracts Reveal Promising Nutraceutical Potential
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Metabolic Profiling via UPLC....pdf
Size:
120.03 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:
Collections