Browsing by Author "Stanislawska-Glubiak, Ewa"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Differences in the Concentration of Micronutrients in Young Shoots of Numerous Cultivars of Wheat, Maize and Oilseed Rape(MDPI, 2022) Korzeniowska, Jolanta; Stanislawska-Glubiak, EwaIndividual species of cultivated plants differ in the content of microelements in the shoots. The aim of our research was to test the hypothesis that the variability of the micronutrient content between cultivars of the same species may be similar or even greater than the differences between species. The research material consisted of shoot samples of 12 wheat, 10 maize and 12 rape varieties collected from production fields in Poland. The smallest number of samples (replicates) within one cultivar was 10. A total of 481 wheat samples, 141 maize samples and 328 rapeseed samples were taken. Wheat samples were taken at the beginning of the stem elongation stage (BBCH 30/31); maize, when the plants reached a height of 25–30 cm (BBCH 14–15); and rape, in the period from the beginning of the main stem elongation stage to the appearance of the first internode (BBCH 30/31). All varieties of the tested crop species were grown in similar soil conditions in terms of pH, texture and TOC content. B, Cu, Fe, Mn and Zn were determined in all plant samples. Wheat showed a significantly lower average concentration of all micronutrients compared to rape and maize (e.g., 10 times less B than rape). On the other hand, among the species tested, rape had the highest concentration of B, Cu and Zn, and maize had the highest concentration of Fe and Mn. In all three tested crops, the differences in the content of B and Zn were greater between species than between cultivars. In the case of Cu, Mn and Fe concentration, the cultivar differences exceeded the species differences. The results suggest that there is no need to take cultivars into account when fertilizing with B and Zn. In contrast, fertilization with Cu, Mn and Fe needs to take into account different requirements of the cultivars for these micronutrients.Item The Phytoremediation Potential of LocalWild Grass Versus Cultivated Grass Species for Zinc-Contaminated Soil(MDPI, 2023) Korzeniowska, Jolanta; Stanislawska-Glubiak, EwaThe aim of the study was to compare the phytoremediation potential of cultivated grasses with local wild grass for soil contaminated with zinc. Two pot experiments were carried out on soil artificially contaminated with Zn. Four species of cultivated grasses were used as test plants: Poa pratensis, Lolium perenne, Festuca rubra, Festuca pratensis, and one wild, native grass: Deschampsia caespitosa. Wild grass seeds were collected from soil contaminated with heavy metals near a zinc smelter. The phytoremediation potential of grasses was determined on the basis of the tolerance index (TI), bioaccumulation (BF), and translocation (TF) factors. Differences were found between the species in the reduction in the shoot and root biomass with increasing soil contamination with Zn. The tolerance of the studied grasses to excess Zn in the soil was in the following order: D. caespitosa > L. perenne > F. rubra > F. pratensis > P. pratensis. In addition, there were differences in the accumulation and distribution of Zn between the roots and shoots, which is related to the different defense mechanisms of the studied grasses against Zn phytotoxicity. Of the five grasses tested, the highest phytoremediation potential was shown by D. caespitosa. This grass had a significantly higher tolerance to Zn and a lower transfer of Zn from the roots to shoots than the other cultivated grasses tested. All four cultivated grasses can be useful for phytostabilization because they accumulated Zn mainly in the roots and limited its translocation to the shoots. Unlike wild grass seeds, cultivated grass seeds are readily available commercially and can be used for the phytoremediation of HM- contaminated sites.Item The Suitability of Several Grasses for the Remediation of Hotspots Affected by Cadmium Contamination(MDPI, 2024) Korzeniowska, Jolanta; Stanislawska-Glubiak, EwaAreas contaminated with cadmium require remediation because it is a highly toxic element. The aim of this study was to assess the Cd tolerance of four grass species (Poa pratensis, Lolium perenne, Festuca rubra, and Festuca pratensis) and to identify the most useful grass for the phytostabilization of areas with extremely high Cd content in the soil. Additionally, the relationship between grass tolerance to Cd and the glutathione (GSH) content in shoots was examined. Two series of pot experiments were carried out using soil artificially contaminated with Cd. Three levels of contamination were used—30, 60, and 130 mg kg−1 Cd—against a control. The plants were cut down 2 months after sowing. At the Cd1 level, L. perenne showed the highest tolerance to Cd (tolerance index TI = 86), while P. pratensis had the lowest tolerance (TI = 65). At Cd2, the TIs ranged from 52 to 59, indicating a similar tolerance of all species. Cd3 was most harmful to L. perenne (TI = 24), while P. pratensis was the most tolerant (TI = 31). Grassroots accumulated much more Cd than shoots. L. perenne showed the greatest increase in root Cd at each contamination level, followed by F. pratensis and then P. pratensis and F. rubra. It is noteworthy that the tolerance of grasses to Cd3 was related to the GSH content in shoots. P. pratensis and F. rubra increased the GSH content 4.6 and 3.6 times, respectively, while L. perenne and F. pratensis only increased it 2.3 times compared to the control plants.