Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of library
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hassa, Wassem"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Differential impacts of nitrogen addition on soil dissolved organic carbon in humid and non-humid regions: A global meta-analysis
    (Elsevier, 2025-03-01) Ren, Tianjing; Smreczak, Bożena; Ukalska-Jaruga, Aleksandra; Li, Xiaojie; Hassa, Wassem; Cai, Andong
    Soil dissolved organic carbon (DOC) is the most active carbon pool, providing essential carbon and energy to soil microorganisms while playing a crucial role in carbon sequestration, transport, and stabilization in soils. Nitrogen (N) addition, a key factor influencing terrestrial carbon cycling, can significantly alter soil DOC dynamics. However, the global patterns and underlying drivers of DOC responses to N addition, particularly across regions with varying aridity indices, remain unclear. This study analyzed 1132 paired observations from 103 independent studies to quantify the response pattern of DOC to N addition in humid (554 observations) and non-humid (574 observations) regions and identify the factors driving these effects. The findings revealed an asymmetrical effect of N addition on soil DOC between humid and non-humid regions, rather than on microbial biomass carbon (MBC) or soil organic carbon (SOC). Specifically, N addition significantly decreased soil DOC (􀀀 2.49%) in humid regions, while it increased DOC (7.30%) in non-humid regions. The effect size of soil DOC decreased linearly with the ratio of MBC to SOC in humid regions but increased linearly in non-humid regions. In humid regions, soil DOC response was positively correlated with initial MBC and inversely correlated with initial soil pH, whereas the opposite trend was observed in non-humid regions. Seasonal precipitation variability was identified as a significant driver of soil DOC response, independent of temperature, soil properties, and N addition rates. Moreover, initial SOC content was the primary driving factor for soil DOC response in humid regions, while the N addition rates were the primary driver in non-humid regions. These findings have important implications for enhancing soil carbon pool management, improving global carbon models, and addressing climate change, particularly under varying climatic conditions.
  • Instytut Uprawy Nawożenia i Gleboznawstwa
  • Państwowy Instytut Badawczy
  • Ul. Czartoryskich 8, 24-100 Puławy
  • E-mail: bc@iung.pulawy.pl
  • Regulamin
  • Privacy policy
  • Cookie settings
  • Pomoc
  • DSpace software